|
|
|
|
|
|
|
|
ISBN |
9787560392288 |
定价 |
RMB88.00 |
售价 |
RM96.80 |
优惠价 |
RM72.60 * (-25%)
|
作者 |
(波蘭)萊謝克·加林斯基
|
出版社 |
哈爾濱工業大學出版社
|
出版日期 |
2021-01-01 |
装订 |
平裝. 無. 1047 页. 26. |
库存量 |
海外库存 下单时可选择“空运”或“海运”(空运和海运需独立下单)。空运费每本书/CD是RM27.00。 空运需时8-11个工作天,海运需时约30个工作天。 (以上预计时间不包括出版社调货的时间以及尚未出版的预购商品) |
|
我要订购 有现货时通知我 |
|
放入下次购买清单 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
購買中國簡體書籍請注意:
1. 因裝幀品質及貨運條件未臻完善,中國簡體書可能有出現磨痕、凹痕、折痕等問題,故簡體字館除封面破損、內頁脫落、缺頁等較嚴重的狀態外,其餘所有商品將正常出貨。
|
|
|
|
|
|
|
|
|
目錄
1 Metric Spaces
1.1 Introduction
1.1.1 Basic Definitions and Notation
1.1.2 Sequences and Complete Metric Spaces
1.1.3 Topology of Metric Spaces
1.1.4 Baire Theorem
1.1.5 Continuous and Uniformly Continuous Functions
1.1.6 Completion of Metric Spaces: Equivalence of Metrics
1.1.7 Pointwise and Uniform Convergence of Maps
1.1.8 Compact Metric Spaces
1.1.9 Connectedness
1.1.10 Partitions of Unity
1.1.11 Products of Metric Spaces
1.1.12 Auxiliary Notions
1.2 Problems
1.3 Solutions
Bibliography
2 Topological Spaces
2.1 Introduction
2.1.1 Basic Definitions and Notation
2.1.2 Topological Basis and Subbasis
2.1.3 Nets
2.1.4 Continuous and Semicontinuous Functions
2.1.5 Open and Closed Maps: Homeomorphisms
2.1.6 Weak (or Initial) and Strong (or Final) Topologies
2.1.7 Compact Topological Spaces
2.1.8 Connectedness
2.1.9 Urysohn and Tietze Theorems
2.1.10 Paracompact and Baire Spaces
2.1.11 Polish and Souslin Sets
2.1.12 Michael Selection Theorem
2.1.13 The Space C(X;Y)
2.1.14 Elements of Algebraic Topology I: Homotopy
2.1.15 Elements of Algebraic Topology II: Homology
2.2 Problems
2.3 Solutions
Bibliography
3 Measure, Integral and Martingales
3.1 Introduction
3.1.1 Basic Definitions and Notation
3.1.2 Measures and Outer Measures
3.1.3 The Lebesgue Measure
3.1.4 Atoms and Nonatomic Measures
3.1.5 Product Measures
3.1.6 Lebesgue-Stieltjes Measures
3.1.7 Measurable Functions
3.1.8 The Lebesgue Integral
3.1.9 Convergence Theorems
3.1.10 LP-Spaces
3.1.11 Multiple Integrals: Change of Variables
3.1.12 Uniform Integrability: Modes of Convergence
3.1.13 Signed Measures
3.1.14 Radon-Nikodym Theorem
3.1.15 Maximal Function and Lyapunov Convexity Theorem
3.1.16 Conditional Expectation and Martingales
3.2 Problems
3.3 Solutions
Bibliography
4 Measures and Topology
4.1 Introduction
4.1.1 Borel and Baire a-Algebras
4.1.2 Regular and Radon Measures
4.1.3 Riesz Representation Theorem for Continuous Functions
4.1.4 Space of Probability Measures: Prohorov Theorem
4.1.5 Polish, Souslin and Borel Spaces
4.1.6 Measurable Multifunctions: Selection Theorems
4.1.7 Projection Theorems
4.1.8 Dual of LP(Ω) for 1 ≤ p ≤∞
4.1.9 Sequences of Measures: Weak Convergence in LP(Ω)
4.1.10 Covering Theorems
4.1.11 Lebesgue Differentiation Theorem
4.1.12 Bounded Variation and Absolutely Continuous Functions
4.1.13 Hausdorff Measures: Change of Variables
4.1.14 Caratheodory Functions
4.2 Problems
4.3 Solutions
Bibliography
5 Functional Analysis
5.1 Introduction
5.1.1 Locally Convex, Normed and Banach Spaces
5.1.2 Linear Operators: Quotient Spaces--Riesz Lemma
5.1.3 The Hahn-Banach Theorem
5.1.4 Adjoint Operators and Annihilators
5.1.5 The Three Basic Theorems of Linear Functional Analysis
5.1.6 The Weak Topology
5.1.7 The Weak* Topology
5.1.8 Reflexive Banach Spaces
5.1.9 Separable Banach Spaces
5.1.10 Uniformly Convex Spaces
5.1.11 Hilbert Spaces
5.1.12 Unbounded Linear Operators
5.1.13 Extremal Structure of Sets
5.1.14 Compact Operators
5.1.15 Spectral Theory
5.1.16 Differentiability and the Geometry of Banach Spaces
5.1.17 Best Approximation: Various Theorems for Banach Spaces
5.2 Problems
5.3 Solutions
Bibliography
Other Problem Books
List of Symbols
Index
編輯手記 |
|
|
|
|
|
|
|
|
|
|
|